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Abstract

We describe a method of simultaneusly tracking noise and
speech levels for signal-to-noise ratio adaptive speedpant
detection. The method is based on the Kalman filter framework
with switching observations and uses a dynamic distriloutio
that 1) limits the rate of change of these levels 2) enforces a
range on the values for the two levels and 3) enforces a ratio
between the noise and the signal levels. We call thism-
bard dynamic distribution since it encodes the expectation that
a speaker will increase his or her vocal intensity in noiske T
method also employs a state transition matrix which encodes
a prior on the states and provides a continuity constraihe T
new method provides 46.1% relative improvement in WER over
a baseline GMM based endpointer at 20 dB SNR.

Index Terms: voice activity detection, endpointing, Kalman
filter, Lombard effect

1. Introduction

We consider the problem of noise robust speech detectidrein t
context of a real time ASR dialog system. A seperate module,
called anendpointer is commonly used for this purpose. A dia-
log system requires the determination of both the start add e
times of speech with low latency and preferably with low com-
putational requirements. By accurately identifying theegh
endpoints, the recognition accuracy is increased and ctampu
tional requirments are reduced. In addition, an endpoidt-
tifies if a user has spoken during prompt so that the system can
stop the prompt. The endpointer also signals the end of bpeec
allowing the recognizer to determine if a valid recognititas
been found.

A simple method for speech endpoint detection is to com-
pute the energy of a signal and assume that speech is présent i
the energy exceeds a threshold. Since the noise and sp&ech le
els vary by environment, strategies for adapting the ttoielsh
are employed [1]. Another common endpointing strategy is to
use a speech/noise classifier, such as a Gaussian Mixturel Mod
(GMM) based classifier. The approach described in this paper
can be seen as a combination of these strategies.

Rennie et al. [2] and Fujimoto et al. [3] both tackle the prob-
lem of tracking the noise level for denoising and voice aigtiv
detection, respectively. They describe related paraditjrat
employ parallel model combination in the log spectrum or log
Mel spectrum domains. They both employ a first order contin-
uous dynamic process for tracking a noise parameter. Ftgimo
et al. [3] treat the noise as a variable and track the noise var
able directly whereas Rennie et al. treat the noise as amando
variable and track the noisevel. Defining the dynamics on the
noise level has benefits related to seperately controltingate
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at which the parameter is allowed to change while allowirgy th
observation to infuence the rate of change.

Unlike the above methods, we work in the cepstral domain
and employ a model with switching observation distribusion
In other words, we make the approximation that the obsenvati
is explained either by the speech model or the noise model. In
the current work, we decompose the observed features imtio a s
that is invariant to the signal level and a set that depend amdi
needs to be adapted.

Since the endpointer needs to make decisions very quickly
after the speech event arrives, and after having observedya v
limited amount of data, this strategy allows the endpoitter
rely on the invariant features until good estimates havenbee
found for the remaining model components. We assume that
only the model components that relates to the gain of theakign
and the gain of the noise are dependent on the environemnt and
channel. In the cepstral domain, only a single componest, i.
the Cy component, is dependent on the gain.

2. Noisy speech signal model

We model the observed signal at fratng*, using standard Mel
frequency cepstral coefficient (MFCC) speech features k&fie
property of the MFCC representation is that the majorityhef t
feature dimensions are independent of the signal energig Th
implicit factoring of the representation allows us to effitily
track the instantaneous signal and noise levels whilerslyling

on the spectral shape information in making the endpointing
decision.

The Oth MFCC is a function of the signal energy level while
the remaining dimensions only capture information aboet th
signal’s spectral shape. Therefore, we define [0 1] and
partition y* into the level-dependent terdf y* = y§ and the
spectral shape tergii. .

The DySANA signal model operates on these observations
using a Kalman filter with switching observations [4]. At bac
frame, the observation is explained by either a speech @auss
mixture model (GMM), or a silence/noise model. We define the
random variabla® to denote this decision for frantes’ = 1 if
speech is present in framgands’ = 0 otherwise. This switch-
ing behavior between different observation distributienshat
makes the DySANA model a switching Kalman filter. Finally,
as in [3], we smooths’ using a simple hidden Markov model
(HMM) to prevent the endpointer from switching too rapidly
between the speech and noise states.

At each frame we track the speech and noise lev-
els relative to their respective models. Each model is
parametrized by a set of Gaussian means and diagonal co-
variance matrices: {gt,, ., ¥, fe,e1..n, fOr speech and



{l.c, s Xn,en Yenel. ., TOrnoise. We define the speech “gain”
g% as the difference between the observed signal lgyeind
the mean level of the MAP component for framia the speech
model,ui’éz’o. The noise gaing},, is defined analogously. The
combined speech and noise gagns- [¢% ¢%]” comprise the
Kalman filter state space.

The joint likelihood of the parameters for framgiven all
previous observations can be factored as follows:

P(y',c, s, g'[Y'"™h) =P(y'|c", ", s") P(c")
P(s'Y'"HP@EY'™) (D)
whereY* denotes the set of observations up to and including
time ¢. The first term is the likelihood of the current frame un-
der the given GMM componenrt and the current estimates of
the dynamic parameters andg’. P(c) is simply the prior

over the mixture components of the speech and noise models.

P(s'[Y*=!) models the dynamics of the speech decision vari-
able andP(¢*|Y*~') models the Kalman filter dynamics of the
gain parameters. We model this using a Gaussian distritoutio

PE'Y'" ") = N(g's pge, Sgt) )
t
_ 9z | . | Mgt Ogt  Ogt
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The endpointing decision is based on the conditional poste-
rior of s*:

P(s' =1]Y") x P(s' = 1Y H)P(y'|s' = 1,Y"") (4)
= P(s'=1Y"™ )Y P()zly’) )
et
where
2o (y") = NV oot + g, Sact +£€705.) ()

3. Mode dynamics

In order to compute the speech posterior for successiveesam
it is necessary to propagate the distribution of the dyngraic
rameterss andg. As shown above, the posterior distribution
over s*! depends on the statistics of the dynamic parameters
from the previous frames® andg’, given the observed signal
up to framet.

The dynamics ofs’ are identical to those of the HMM
forward algorithm. Therefore, the conditional prior gft!
can be found simply by multiplying the posterior gf by the
speech/nonspeech transition matrix.

ZP HyHp

The conditional gain prior for frame+ 1 has the analogous
form for a continuous random variable.

/Pg|Y

Proper selection of the gain transition distribution
P(g'*'|g") is key to achieving the desired performance. A
good first order approximation for the dynamic distributisn
a random walk model which allows the state variable for time
t+ 1 to move away from the estimate for timé any direction:
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(8)

P(g"g") =

However, such a dynamic distribution is problematic for use
with Kalman filters with switched observations. Recall thaly
the speech or noise gain are observed in any given frameeTher
fore if such dynamics are used, the variance for the unobderv
variable can grow without bounds during long periods ofrsite
or speech. Furthermore, there are no constraints on this lahi
gt. So, for example, it is possible for the gain estimates te pre
dict a very high noise gain which may result in speech frames
being misclassified as nonspeech.

To control these problems, we introduce constraints on the
dynamic distribution in the form of a prior-like factor ovgf*!.
This leads to théombard dynamic distribution

P(g"g")

x N(g™" 8" Saw )N (8™ wsnr, Sswr)- (10)

This distribution has the effect of introducing an SNR caugpl
between the two signals. This effect is intuitively appegis it
allows the model to assume that the speech level will be highe
if a high noise level has been observed. This enables it to cap
ture the Lombard effett Notice in figure 1 that during the ini-
tial noise from 0.0 sec to about 1.5 sec, the speech gaimwfsllo
the noise gain, even though only noise is observed. Addition
ally, this constraint prevenis’ from straying too far from the
prior level, and prevents it’'s variance from growing toogkar

An interesting aspect of the dynamic distribution is thadlit
lows one to tune the performance over a range of ROC curves
e.g. between the DySANA-p and the DySANA curves in figure
5.

As shown in section 2, the posteriorgf givenY* in equa-
tion 8 is a mixture of Gaussians. This implies that the fus-di
tribution overg’™! has a distribution withV, + N,, modes.
Propagating such a complex distribution can be expensive. |
stead, as in [2], we approximate it with a single Gaussian at
the most probable mode of the full distribution. This occalrs

the maximum a posteriori settings df ands?, ¢* ands®. For
example, if the MAP setting ha = 1,
P ™Y m N pgrer, Sgrn) (11)
where
Bgitr =W, + (I = W)pgng 12)
Ygtr1 = W(Zrw + Xep) (13)
t
_ 1 1] Yo — Ha,éet 0
Hop = Yep <Egt Hgt + |:0:| Turct 0 ) (14)
1ol 1\
_ -1
Sep = <2 n [O O} — ) (15)
W =Ssnvr(Zsnr 4+ Zrw + Zep) " (16)

The propagated megm,.+1 is a weighted combination of
the conditional prior gain from the previous observatipi,,
the SNR gain priorp ¢, and the gain estimate based on the
observation. Since observing speech gives no new infoomati
about the instantaneous noise gain, and,, reduce to the
previous values for the noise gain. This forces the noise tgai
drift toward the prioru ¢ 5 during a long sequence of speech
observations. SinCEswr is a full matrix, 17 is also full. This
allows the observation of speech to influence the updatééor t

1The Lombard effect is the tendency to increase one’s votah ity
in noise.



noise model. As described above, the variance of gain of the
unobserved model increases at each time step, but its giswth
bounded by the dynamic distribution.
The derivation for the case whe$é = 0 is similar, except
g, andXy, are as follows.
> (7)

(18)

t
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An example of DySANA speech and noise gain tracking
can be seen in figure 1. The GMM endpointer makes many
false accept errors during the noise burst at about 3.0 dscon
while DySANA is able to adapt to the increased noise level and
correctly classify the noisy frames. As shown in the bottom
panel, the gain of the observed model tracks the observyation
but is falls back to the prior levelDf when unobserved. Be-
cause we use a full covariance matrix g v r, the estimate
for the unobserved model sometimes changes, tracking that o
the observed model. Finally, we note that the variance of un-
observed model increases with the number of frames sinee pre
vious observation as on the transition from noise to speéch a
1.5 seconds. Again, this implies decreased reliance oreted |
dependent features of the unobserved model for the endippint
decision, instead backing off to spectral shape features.

4. Experiments
To evaluate the performance of the proposed endpointingt alg

System 0 5 10 15 20 Clean
No VAD 106.5 97.8 817 701 635 438
ETSI AFE 93.7 875 787 59.6 575 7.9
Energy 1065 96.5 76.7 56.4 30.0 3.8
GMM 79.7 634 352 222 115 38
SKF-h 755 486 274 172 9.0 3.8
SKF 788 516 278 172 87 3.9
DySANA-p-h  66.7 481 263 145 65 3.3
DySANA-p 646 473 277 146 7.8 3.4
DySANA-h 675 440 247 159 75 3.6
DySANA 742 468 239 135 6.2 33

Table 1: Word error rate of different endpointers as a fuomcti
of SNR. Note that data was distorted by AMR encoding and
decoding to match cell phone data.

that a given frame is dominated by speech (Pés')) and then

feeding the resulting binary decision to a simple finiteestat-

chine similar to that used in [6], designed to smooth the autp
The testing subset of the data was used to determine the best

parameter settings for the different algorithms. We penfmt a

grid search over the adaptation parameters and decisieshthr

old for each system and chose parameters that maximized the

average word error rate across all SNRs. For the SKF end-

pointer, the observation variance was set.f@ For DySANA,

100 10 10 0

10 40|’ 0 25

were found to work best. Finally, the speech/nonspeectsitran

tion matrix for all endpointers was chosen such that theéostat

Bsnp = 0, Bsnr = andXrw =

rithm, we assembled a dataset of noisy speech signals based ary distribution had a speech prior @23, which matched that

on the DNA database of car noise recordings [2] and the AU-
RORA2 framework for noisy speech recognition [5]. Clean
speech signals from the AURORAZ test set were mixed with car
noise from the DNA database at signal-to-noise ratios waryi
between 0 and 20 dB in increments of 5 dB. The noisy utter-

of the test set.

5. Results

Table 1 shows the recognition performance using the diftere

ances were then passed through the AMR speech coder/decoderalgorithms described above. The speech recognzier used was

chain [1] to simulate the processing applied to cell phoge si
nals. Finally, the resulting noisy signals were broken up in
utterances designed to mimic interactions with a dialogesys

8% of the resulting utterances were composed of 3 secones seg
ments containing no speech at all. The remaining utterances
were composed of 3 seconds of noise followed by the noisy
speech utterance, followed by an additional 2 seconds s&noi
The final dataset consisted of a total of about 100 minutes of
data, split 66%, 33% development and testing respectivéig.
results reported in section 5 are over the test set only.

We compare the proposed endpointer to a simple endpointer
based on an adaptive energy threshold (Energy), the ETSI AFE
endpointer described in [6] (ETSI AFE), a baseline statisti
cal model endpointer based on an unadapted GMM classifier
(GMM), and the switching Kalman filter endpointer described
in [3] (SKF) that tracks the noise process underlying thespe
signal. Finally, we evaluate a few variants of the propoded a
gorithm: the full DySANA endpointer described in the previ-
ous section, the DySANA endpointer without HMM smooth-
ing (DySANA-h), the DySANA endpointer without prior con-
traints (i.e. only using random walk dynamics) (DySANA-p),
and DySANA-p-h using neither. All statistical model basgs-s

the multicondition Aurora2 HTK recognizer trained over AMR
coded speech. The statistical model based endpointers-sign
icantly outperform the ETSI-AFE and energy-based systems
in all noise conditions. The GMM endpointer performs very
poorly under the noisiest conditions where the model usexd wa
an extremely poor fit for the data. The adaptive algorithrhs al
improve on this baseline, with the full DySANA system per-
forming best under all but the noisiest conditions wherersrr
result from the SNR prior distribution discouraging theteys
from tracking extremely high noise levels. The systemsukiat
lize HMM smoothing tend to perform better than the same sys-
tem without smoothing under less noisy conditions, however
low SNRs the smoothing sometimes reinforces erroneousiclas
fications, resulting in reduced performance. In 0 dB coodgi
the DySANA variant that only uses random-walk dynamics per-
forms best, but as the SNR increases it does not perform &s wel
The ROC performance of statistical model based algorithms
are shown in figure 5. Again, the DySANA endpointer performs
best in general. However, when removing the gain prior dis-
tribution from the Kalman filter dynamics DySANA becomes
more skewed towards false reject errors. This is a resulief t
behavior described in section 3 where the noise gain tracks t

tems used the same 32 component speech and nonspeech modhigh, resulting in many misclassification errors of speechan-

els trained on data collected from the Goog411 dialog system
The final VAD decision for the statistical model-based end-
pointers is made by first thresholding the posterior prdigbi

speech. While this problem does not appear very severe at the
frame level, itis clearly a significant issue at the wholerghce
level, explaining the decreased recognition performaricei®
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Figure 1: Example of DySANA speech and noise level adaptafitie middle panel shows the speech postePipr’|Y*) of the signal

displayed in the top panel using a baseline GMM classifier BMNnd using the DySANA endpointer. The bottom panel shows th

DySANA VAD’s estimate of the speech and noise gain. The waftbach gain track denotes the associated variance.
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Figure 2: ROC curves averaged across all noise conditiagshpws the relationship between false accept and faksetsejt the frame
level and (b) shows the utterance level. The stars in (b) téeth@ operating points of the endpointers correspondiriget@esults in

table 1.

system in table 1. 2]

6. Conclusion [3]

We have presented a method for signal-to-noise ratio adapti
speech endpoint detection based on a switching Kalman filter [4]
framework for tracking the instantaneous speech and neise |
els. A key to this method’s success is a dynamic distribution
that limits the range of values that the noise and speech Isxode
can take and introduces a coupling between the levels. When
applied to speech corrupted by car noise, the proposed thetho
shows significant improvement over an unadapted GMM classi-
fier based endpointer.

(5]

(6]
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